Programming FRC Robots:
An Introduction

The FRC Robot Framework
Motor Basics
Sensor Basics

Real-Time Systems Programming

FIRST® Robotics Competition Team 1640 Intro to FRC Robot Programming 1

Intro to Robot Programming

So, you have a robot with
wheels and belts and
motors and sensors...

Now you need to write
code to control all parts
of the robot in an
efficient and strategic
way in order to compete
in the game...

FIRST® Robotics Competition Team 1640 Intro to FRC Robot Programming 2

The FRC Robot Framework

* FRC provides a framework for robot code

- It is required to integrate with the Field Management
System (FMS) at competitions

- Teams hook in their own code in certain places

* Default code and supported libraries are available in
Java, C++, and LabVIEW

* WPI library code provides hardware integration

- For motors, motor controllers, pneumatics, sensors,
joysticks, and Kinect sensors

FIRST® Robotics Competition Team 1640 Intro to FRC Robot Programming 3

Java Robot Framework

http://www.wbrobotics.com/javadoc/edu/wpi/first/wpilibj/IterativeRobot.html

import edu.wpi.first.wpilibj.IterativeRobot;

public class MyRobot extends IterativeRobot ({
public void robotInit() { .. }
public void disabledInit() { .. }
public void disabledPeriodic() { .. }
public void autonomousInit() { .. }
public void autonomousPeriodic() { .. }
public void teleopInit() { .. }
public void teleopPeriodic() { .. }
// <disabled, autonomous, teleop>Continuous as well
// team-specific methods

FIRST® Robotics Competition Team 1640 Intro to FRC Robot Programming 4

C++ Robot Framework

http://firstforge.wpi.edu/sf/go/docl197

class My2011Robot : public IterativeRobot

{ // data member declarations

public:

MyRobot (void) { // constructor }

void RobotInit ()

void DisabledInit() { .. }

void AutonomousInit () {
void TeleopInit() { .. }
void DisabledPeriodic ()

{ 1}

void AutonomousPeriodic() { .. }
void TeleopPeriodic () { .. }
// team-specific methods

i

START ROBOT CLASS (My2011Robot) ;

FIRST® Robotics Competition Team 1640 Intro to FRC Robot Programming

{ // initialization }

LabVIEW Robot Framework

Robot Main implements the framework and
scheduler for your robotics program.

it should not be necessary to modify this V1.
You should be able to code your robot
within the Team Vi described below.

1. Begin.vi

Called once at beginning, to open /0,
initialize sensors and any globals, load
settings from a file, etc.

2. Autonomous Independent.vi
Automatically started with the first packet
of autonomous and aborted on the last
packet. Wite this Team VIto loop for the
entirety of the autonomous period.

3. TeleOpvi
Called each time a teleop DS packet is
received and robot is enabled.

4. Disabled.vi
Called each time a packet is received and
the robot is disabled.

5. Vision.vi
A parallel loop that acquires and processes
camera images.

6. PeriodicTasks.vi
Parallel loops running at user-defined rates.

7. Finish.vi
Called before exiting, so you can save data,
clean up /0, etc.

8. Build DashBoard Data.vi

Called for each driver station packet
including timeouts. It s used to send select
1/0 values back to the Dashboard.

[Based on the robot mode, call the appropriate Team code
Double click an icon to open a Team VI and modify code

[["Teleop Enabled”

¥

[Execute Teleop VIto react
lto 2 new Driver Station packet
E Taop

Finish
=

Create /O refnums
& initialize robot

]

BAiSH) [Start Robot Communication
M| [Runs in parallel with user code.

[Carry out periodic tasks such
as control loops.

FIRST® Robotics Competition Team 1640 Intro to FRC Robot Programming

Motor Basics

* Motors need control signals to run
- Can be simple on/off using a spike (relay) controller
* Motor speed controllers give percentage of power

- Two types in FRC support libraries:

* Victors
* Jaguars
- Code refers to the speed controller, not the motor

- Speed controller sends signals to the motor

FIRST® Robotics Competition Team 1640 Intro to FRC Robot Programming

Motor Basics: Java Examples

import edu.wpi.first.wpilibj.Jaguar;

// creating a Jaguar reference

Jaguar motorl = new Jaguar(1l); // default digital module, channel 1
// setting the desired speed (range of -1.0 to 1.0)
motorl.set(0.5);

import edu.wpi.first.wpilibj.Victor;

// creating a Victor reference

Victor motor2 = new Victor(2); // default digital module, channel 2
// setting the desired speed (range of -1.0 to 1.0)
motor2.set(0.25);

import edu.wpi.first.wpilibj.Relay;

// creating a Relay reference, allowing forward direction only
// default digital module, channel 1

Relay motor3 = new Relay(1, kForward);

// setting the motor to on and off

motor3.set(koOn);

motor3.set (koff);

FIRST® Robotics Competition Team 1640 Intro to FRC Robot Programming

Motor Basics: C++ Examples

#include “WPILib.h"”;

// creating a Jaguar reference
Jaguar *motorl = new Jaguar(1); // default digital module, channel 1

// setting the desired speed (range of -1.0 to 1.0)
motor1->Set(0.5);

// creating a Victor reference
Victor *motor2 = new Victor(2); // default digital module, channel 2

// setting the desired speed (range of -1.0 to 1.0)
motor2->Set(0.25);

// creating a Relay reference, allowing forward direction only
// default digital module, channel 1

Relay *motor3 = new Relay(1, kForward);

// setting the motor to on and off

motor3->Set(koOn);

motor3->Set (koff);

FIRST® Robotics Competition Team 1640 Intro to FRC Robot Programming

Motor Basics: LabVIEW Examples

Opening a relay allowing
forward and reverse
and creating a reference

@ Digital Module 1 ~|{oter] |~[fiewar] |
o PWM 2 vf’,::. B |
. Jaguar ¥
Opening a Jaguar- e 5 pening a Victor-
contrplled motor and controlled motor and
creating a reference creating a reference

05
Qutput

‘ Setting motor output to 50% ‘

Image courtesy of Ben Rajcan

FIRST® Robotics Competition Team 1640 Intro to FRC Robot Programming

Sensor Basics

» Sensors provide data about a robot and its
environment

- The angle of wheels, the distance from an object, etc.
» Sensors can provide analog or digital data

- Analog sensors provide varying voltages

- Digital sensors provide on/off data

» Support libraries are provided for both types

FIRST® Robotics Competition Team 1640 Intro to FRC Robot Programming 11

Sensor Basics: Java Examples

import edu.wpi.first.wpilibj.AnalogChannel;

// Create a reference to an analog sensor
// default analog module, channel 1
AnalogChannel sensorl = new AnalogChannel (1) ;

// Get the average voltage from the analog sensor
double voltage = sensorl.getAverageVoltage() ;

import edu.wpi.first.wpilibj.DigitalInput;

// Create a reference to a digital sensor
// default digital module, channel 1
DigitalInput sensor2 = new DigitalInput(l);

// Get the value from the sensor
boolean value = sensor2.get();

FIRST® Robotics Competition Team 1640 Intro to FRC Robot Programming 12

Sensor Basics: C++ Examples

#include <AnalogChannel.h>

// Create a reference to an analog sensor
// default analog module, channel 1
AnalogChannel *sensorl = new AnalogChannel (1) ;

// Get the average voltage from the analog sensor
float voltage = sensorl->GetAverageVoltage() ;

#include <DigitalInput.h>

// Create a reference to a digital sensor
// default digital module, channel 1
DigitalInput *sensor2 = new DigitalInput(l);

// Get the value from the sensor
UINT32 value = sensor2->Get();

FIRST® Robotics Competition Team 1640 Intro to FRC Robot Programming 13

Sensor Basics: LabVIEW Examples

Opening an analog
channel and [Znalog
creating a reference

Opening a digital
channel and
creating a reference

Value

‘ Getting the true/false value

Image courtesy of Ben Rajcan

FIRST® Robotics Competition Team 1640 Intro to FRC Robot Programming 14

Joystick Basics

Opening USB joystick ports,
creating references, and
then using device references

Joysticks
ovetic

Joystick X DevRef
-

FIRST® Robotics Competition Team 1640 Intro to FRC Robot Programming 15

Real-Time Systems Programming

e Real-time system — hardware/software system with
real-time constraints

- e.g. deadline for system response after an event
* Robots are real-time systems

- Driver controls need to be carried out in real-time

- Interacting with the world has to be in real-time

» All parts of a real-time system must be time-aware
or actively scheduled

FIRST® Robotics Competition Team 1640 Intro to FRC Robot Programming 16

Real-Time Constaint: Safety

* The robot framework Best practice: Make
has built-in safety sure to send each
features to ensure motor a signal at
safe robot operation least every 50ms

- e.g. motors will be - Even ifitis to set it
turned off if no to 0 power

Signals are Watchdog Expiration: System 8, User 0
received within | ¥hes seization: systen 7, vser o
100ms (default e o ton:
value)

System 6, User 0
System 5, User 0
System 4, User 0

Driver 1
Station

FIRST® Robotics Competition Team 1640 Intro to FRC Robot Programming

“Parallel” Processes

* Processes happen “in parallel” in real-time systems

- Actually, each gets a slice of CPU time one at a time
- LabVIEW handles this “threading” automatically

Memo
e | I dow't have personal
and, C++ FRC frameworks,
T but it looks like yow have
to- create thweads explicitly.
-JCBC]

M| [Carry out periodic tasks such

as control loops.

FIRST® Robotics Competition Team 1640 Intro to FRC Robot Programming

How NOT to Freeze Your Robot

» Threading of multiple processes needs the processes
to “play nicely” by having “idle time” built in
- Each needs to allow other processes time to run

- Putting appropriate wait times in loops is important

Barrier
Wheel

FIRST® Robotics Competition Team 1640 Intro to FRC Robot Programming 19

Summary

e FRC framework is required for all competition bots

* Default code and WPI support library is available

- Java, C++, and LabVIEW are supported
- Other languages possible, but not supported

» Real-time systems programming involves:

- Handling real-time constraints (safety monitors)

- Handling multiple “parallel” processes and making
sure they all share CPU time nicely

FIRST® Robotics Competition Team 1640 Intro to FRC Robot Programming 20

