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A robot drive-train acceleration model was developed for Team 1640 late in 2008 as a 
tool for drive-train design.  The approach and mathematics used in developing this model 
were documented only in manuscript at that time.  A slightly revised and improved 
edition of the model math is documented here. 
 
Scope 

The model determines acceleration, velocity and position versus time of a robot 
which is at rest at t = 0, and where full motor power is applied for t ≥ 0.  A 5 s 
duration is modeled (10 s under Lunacy conditions). 
 
Wheel slippage is accounted for. 
 
All weight-bearing wheels are assumed to be driven (important). 
 
Robot mass, gear reduction ratio, wheel diameter, static & kinetic friction 
coefficients (wheel to floor), drive-train torque loss and number of CIM motors 
are variable. 
 
CIM motors are default.  Substituting other drive motors for CIMs is 
straightforward, but there are no provisions made for mixed motor systems. 
 
Wheel torque assumes 4 wheels and equal weight distribution.  These 
assumptions are unimportant to the model outcome. 
 

Definitions 
t = time (s) 
x = position (ft) 
v = velocity (ft/s) 
a = acceleration (ft/s2) 
m = robot mass (lbm) 
rw = wheel radius (ft) 
n = number of drive motors 
G = overall gear reduction ratio (motor to wheel) 
µs = static coefficient of friction 
µk = kinetic coefficient of friction 
νM = motor rotational speed (revolutions/s) 
νMU = unloaded motor rotational speed (88.5 revolutions/s for CIM) 
νW = wheel rotational speed (revolutions/s) 
τM = motor torque for one motor (ft lbf) 
τMS = motor torque at stall (1.789 ft lbf for CIM) 



τML = motor torque loss due to transmission losses (0.223 ft lbf used) 
τW = wheel torque for all drive wheels combined (ft lbf) 
I = motor current @ 12 VDC (amps) 
IU = motor current, unloaded @ 12 VDC (2.7 amps for CIM) 
IS = motor current, stalled @ 12 VDC (133 amps for CIM) 
gc = conversion factor (32.174 lbm ft/lbf s

2) 
Ffs = maximum static frictive force (lbf) 
Ffk = maximum kinetic frictive force (lbf) 
Fd = maximum drive force under non-slip conditions (lbf) 
wheel slip = logical – TRUE or FALSE 
slip ∆v = wheel slip velocity (ft/s) 
∆t = time step used for numerical solution 

 
Initial & Boundary Conditions 

At t = 0 s: 
x = 0 ft 
v = 0 ft/s 

 
At t ≥ 0 s: 
 Motor at full power (follow motor curves) 

 
The Mathematics – without wheel slippage 

The relationship between acceleration, velocity and position is: 
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An object accelerates due to applied force. 
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therefore 
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Note: If we were using a consistent unit system, such as SI or cgs (a.k.a. metric), 
the gc factor would be unnecessary. 
 
Ignoring wheel slippage (for now), force is applied via drive wheels (the number 
of drive wheels is not important). 
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Note that τW is the total torque available to all drive wheels combined. 
 
Torque at wheels depends upon motor torque, gearing, drive-train losses and 
number of motors.  Earlier versions of this model used a drive-train efficiency 
factor (ε), so that τW = εGnτM.  This approach has the drawback of reducing 
drive-train losses to zero as speed increases and the motors unload.  Clearly 
unrealistic as the maximum robot speed was then based on unloaded motor 
speeds.  I don’t know that a constant torque loss is accurate, but it’s better than a 
constant efficiency. 
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so that: 
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A motor running at full power (12 VDC) will have a rotational speed depending 
upon the resistance (torque) applied to that motor.  The relationship between 
torque and speed is linear, so that: 
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Motor speed relates to wheel speed: 
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and (with no wheel slippage) to velocity: 
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Substituting eq 11 into eq 8 
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eq 12 into eq 6 
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eq 13 into eq 3 
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eq 14 is a 1st-order ordinary differential equation.  It may be solved for v(t) 
analytically via straightforward integration and use of initial conditions (@ t = 0; 
v = 0) to solve the constant of integration.  A second integration (a bit uglier & 
less straightforward, but quite do-able) can solve for x(t), again utilizing initial 
conditions (@ t = 0; x = 0) to solve the second constant of integration. 
 
This analytical solution, while elegant, is only valid for the case that the wheels 
don’t slip.  Since this is a real poor assumption, we need to use an alternative, 
numerical approach to solve this differential equation. 

 
Wheel Slippage 

Maximum frictive force is 
 

nf FF µ=          eq 15 

 
where: 
 µ = the coefficient of friction; and 
 Fn = the normal force holding the two frictive surfaces together 
 
For a robot on a flat playing surface, Fn is the robot’s weight (not mass – weight is 
a force).  A robot having a mass of 120 lbm will apply a weight or force (Fn) of 
120 lbf onto a flat playing surface.  eq 2 still applies here (F = ma/gc), but on 
Earth, a = g = 32.174 ft/s2.  Since gc = 32.174 lbm ft/lbf s

2, mass and weight are 
numerically identical for English units on Earth.  Metric units neatly avoid this 
confusion. 
 



The maximum frictive force is different between objects at rest and moving 
objects.  For objects at rest (not sliding relative to each other), the maximum 
frictive force is: 
 

nsfs FF µ=          eq 16 

 
For objects sliding relative to each other: 
 

nkfk FF µ=          eq 17 

 
µs (the static coefficient of friction) is larger than µk (the kinetic coefficient of 
friction).  It takes less force to keep something sliding than to start it sliding. 
 
So, for our drag race model, if wheels are not already slipping, they will not slip 
unless Fd > Ffs. 
 
Once wheels are slipping, they will not stop slipping until Fd < Ffk. 
 
The numerical calculations need to test for wheel slippage based on the above 
criteria. 
 
During the period of time when the wheels are slipping, the accelerating force 
applied to the robot is Ffk, not Fd. 
 
So, as long as wheels are slipping, eq 14 needs to be replaced by 
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When the wheels slip, wheel torque is determined by kinetic frictional force. 
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likewise motor torque. 
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and motor & wheels speeds from eq 7 & eq 9. 
 

Numerical Solution 
Differential equations are solved via numerical methods by breaking the problem 
up into small segments along the independent variable (time, in this case).  dv/dt 



is first solved at t = 0 using the initial condition @ t = 0; v = 0.  Other useful 
values are calculated as well.  A small time step is made (typically 0.01 s is good 
for this model) and a new velocity is estimated  
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Position is estimated using the average velocity during the time step 
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The analytical solution to eq 14 is useful here is verifying the accuracy of the 
results and in selecting an appropriate ∆t value.  The ∆t of 0.01 s was selected via 
this approach (forcing the model to ignore wheel slippage). 
 
At each time step, an assessment needs to be made as to whether the wheels are 
slipping.  The logical variable wheel slip, calculated for each time step, is used to 
monitor wheel slippage. The logic for setting wheel slip is: 

• If wheel slip(i-1) = FALSE then 
o if Fd ≤ Ffs then wheel slip(i) = FALSE 
o if Fd > Ffs then wheel slip(i) = TRUE 

• If wheel slip(i-1) = TRUE then 
o if Fd ≤ Ffk then wheel slip(i) = FALSE 
o if Fd > Ffk then wheel slip(i) = TRUE 

 
If for a time step, wheel slip = TRUE, then eq 18 needs to be used to solve dv/dt.  
eqs 19 & 20 should be used to calculate torque.  
 
If for a time step, wheel slip = FALSE, then eq 14 needs to be used to solve dv/dt.  
eqs 12 & 5 should be used to calculate torque.  
 

Analytical Solution to eq 14 
While the analytical solution to eq 14 is not suitable to model robot acceleration 
(because it cannot account for wheel slippage) it is useful in checking the 
accuracy of the numerical solution and in setting an appropriate time step. 
 
Staring with eq 14 
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rearranging 
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This can be integrated 
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or 
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Solving for C1 using the initial conditions @t = 0; v = 0 
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The resulting equation becomes 
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Solving for v 
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Integrating a 2nd time to solve for x 
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Solving for C2 using the initial conditions @t = 0; x = 0 
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Yielding the analytical solution for x (position, ft) 
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By setting wheel slip manually and universally to FALSE, eqs 28 and 32 may be 
used to check the accuracy of the numerical method.    
 

The Worksheet 
 

 
 


