
Pivot-Wheel Drive – Crab with a Twist!
Clem McKown – Team 1640

13-November-2009 (eq 1 edited 29-March-2010)

4-Wheel Independent Pivot-Wheel Drive describes a 4wd drive-train in which each of the
(4) wheels are independently driven and may be independently pivoted for steering
purposes. The design offers the potential for excellent drive-train performance and a
solution to conventional (tank) drive-train design constraints. The design also brings
some clear design and control challenges.

This arrangement provides the possibility to operate in several different modes. One of
these modes is Crab mode. In Crab Mode, all wheels steer together and drive at a
common speed thereby steering the robot in any direction on the 2-d playing surface (true
2-d drive). As described above, this mode does not allow overt control of chassis
orientation.

Gary Deaver, a Team 1640 Mentor, made the case that a Pivot Drive robot with 4
independently driven and steered wheels was not intrinsically constrained to typical Crab
behavior and that it should be feasible to overtly control chassis orientation.
Furthermore, from a human interface standpoint, a 3-axis joystick which includes a twist
axis as the 3rd control axis would provide an intuitive means of human control over a
Crab twist function.

The ability to control chassis orientation in Crab Mode provides an obvious operating
advantage.

This paper addresses how to accomplish such “twist” behavior from a Pivot and Drive
standpoint.

The Basic Crab Chassis

The Basic Crab Chassis is shown in Figure 1. There are 4 Pivot Wheels set on an
l x w wheelbase. Wheel numbering here is consistent with the earlier
“Programming a Pivot-Wheel Drive” paper of 9-August-2009. A chassis Center-
Point (CP) may be defined in the geometric center of the wheelbase. Each wheel
(and each pivot) is h distance from the chassis CP, where:

2

22 wl
h


 eq. 1

Direction of Travel is not necessarily aligned with the wheelbase. The difference
between the chassis orientation and the direction of travel is . It is important
than  is known. Right-hand-rule applies to angle measurements with the thumb

on the z (up) axis. All angle calculations will be carried out in radians. All
angular values expressed here will be in radians unless otherwise noted.

Normally in Crab Mode, all wheels will be aligned with the direction of travel and
all drives will be equally powered (or, ideally, all driven at the same speed, which
is not necessarily the same thing). All wheels would therefore be pivoted at

 = 2- eq. 2

from “straight ahead”.

The orientation of each pivot/wheel from the chassis CP may also be defined
relative to the direction of travel, i (i = 1-4).

FIGURE I – Basic Crab Chassis

Crab Modes

There are two logical ways to control Crab Mode. There are also two logical
ways to twist in Crab Mode. Each of the two twist modes fits intuitively (also

logically and philosophically) with its own Crab Mode. We will describe the two
Crab Modes before describing the Twist Modes.

Crab Mode 1 – Anchored to the chassis

In this mode, the direction of the joystick’s deviation from neutral
corresponds directly to the chassis’s direction of travel, relative to the
chassis’s orientation. Pushing the joystick straight ahead moves the
chassis straight forward ( = 0). Throwing the joystick directly right
moves the chassis towards the chassis’s right side ( = 3/2). Pulling the
joystick straight back moves the chassis backwards ( = ). A good mode
if chassis orientation means something.

It is not clear that the drive motors would ever reverse in Crab 1.

Crab Mode 2 – Free form (but I know where I am, really!)

I am certain this is how Team 118 worked in 2007 (except maybe the
knowing part).

In Crab 2, y-direction joystick movement runs the drive motors (forward
or reverse). x-direction joystick movement runs the steering motors (left
and right). A neutral x-position means that the robot continues on its
current heading regardless of that heading’s orientation with the chassis.

x-direction joystick movement changes heading, without regard to chassis
orientation.

There is a presumption here that one wheel will be the master and the
other three slaves. One wheel must set the heading. The other three need
to point in the same direction.

This could be very intuitive for a driver (looking for movement without
having to pay and attention to chassis orientation). Visually, we are
directly attuned to movement. Attention to orientation requires thought,
slowing the process.

This is as far as I care to judge Crab 1 & 2 without data. They are different,
though. Fortunately, through the magic of programming, we can (in principle)
accommodate both.

Twist Modes

Twist 1

Crab 1 locks joystick orientation with chassis drive direction. Twist 1
should be consistent. This can be accomplished by incorporating a Snake
Mode turn into a Crab Mode 1 Twist. Such a turn is shown schematically
in Figure 2.

Through the turn, the orientation of the chassis relative to the direction of
travel () never changes. Chassis orientation does change relative to the
field, and does so in an overt, controlled manner.

Twist 1 is really a turn, not a twist, but it is a Snake turn performed in
Crab Mode.

FIGURE 2 – Twist 1 Schematic

Twist 2

In Crab 2, steering is relative to the chassis’s current heading in relation to
the field. There is no fixed relationship between joystick position and
chassis heading (). In Crab 2, it would make sense for Twist to rotate the
chassis without (if possible) changing the heading relative to the field.
This would necessarily change .

So Twist 2 is a real twist and not a turn. Twist 2 is shown schematically in
Figure 3.

FIGURE 3 – Twist 2 Schematic

Twist 2 introduces a new steering regime to 1640 – dynamic steering.

Up to this point (including Twist 1), steering can be considered static.
That is, once the human controls are set, this determines a robot response
(steering angle & drive speed, in this case) which does not change until the
human controls change.

Twist 2 is different. In order to rotate the chassis while retaining a
constant bearing (relative to the field), steering and drive speed need to be
dynamic. Steering angle and drive speed changes continuously for each
wheel as a function of i (for given human interface values). This will
provide a unique challenge for the team.

Twist 3

Did I say 2 twist modes? What was I thinking? There’s a caveat.

If the robot is stationary, a 3rd twist is logical. This simply sets all of the
wheels tangent to the circle that they describe and turn the chassis like a
turret. Ken Au has already programmed this as an independent mode.
This is also the logical limit of a Snake Mode turn (but in Snake the
“inside” pivots turn an extra ). See Figure 4.

In the configuration shown, it would be necessary to run two motors in
reverse to rotate the chassis.

We will see that Twist 3 is logically incorporated in Twist 2 without a
special effort.

FIGURE 4 – Twist 3 (Stationary Chassis Rotation)

The Math behind Twist 1

Twist 1 is a generalized approach to Snake Mode.

Figure 5 defines the basic geometry behind Twist 1. The chassis is represented by
a circle of radius h about a chassis CP. There is an angular bearing of travel
relative to the nominal chassis orientation of . There are n (n = 4 in our case, but
this is not important here) wheels distributed around the circle’s radius (only one
is shown), each at a known, fixed orientation (i°) relative to the physical chassis,
but at a variable orientation relative to the direction of travel (i), so that:

 ii  eq. 3

Care needs to be taken to check that i remains in the range 0 - 2 (add or subtract
2 to if necessary).

When driving in Crab Mode (without twist), all wheels are oriented at  = 2 – 
relative to the chassis’s “straight ahead” orientation.

As with the earlier Snake Mode analysis, it is useful to imagine a “reference
wheel” on the centerline relative to the direction of travel. This reference wheel is
located h distance ahead of the chassis CP. The centerline reference wheel would
respond directly and proportionally to the joystick z-axis input and therefore
determine the turn radius (RCL) as a function of reference pivot angle (CL). The
nomenclature  is adopted here because it is an additional steering change on top
of the Crab steering angle .

FIGURE 5 – Twist 1 Geometry

CL is assigned proportionally from the joystick z-axis input. For the
sake of simplicity, I limited the maximum CL values to the range ±/4.
This limitation keeps the turning centerpoint from coming inside the
chassis circle. In Snake Mode, the limitation is ±/2. The chassis turn
radius RCP is calculated:

CL
CP

h
R

tan
 eq. 4

A turn radius for each wheel (Ri) can be calculated.

  222 sincos iCPii hRhR   eq. 5

As well as a twist steering angle (i). (Note: the following equation may
need to be negated or otherwise modified based on joystick input specs).

  







 

i

i
i R

h
signzjoystick




cos
sin__ 1 eq. 6

The wheel drive velocity factor for each wheel is the ratio:

maxR

R
v i

i  eq. 7

where Rmax is the greatest turning radius for the wheels.

A worksheet for Twist 1 calculations was developed.

The most significant complication of Twist 1 as compared to Snake Mode
is that the calculations depend upon the chassis orientation , and can
therefore not be easily pre-calculated (unless you parse  and pre-calculate
a 3-d array).

Twist 1 is a static steering system. Once the joystick controls are set, all
steering and drive values are determined and do not change until the
joystick controls change.

Math behind Twist 2

Twist 2 geometry is shown schematically in Figure 6. It’s actually simpler
than Twist 1. It retains the useful concept of the h-radius chassis circle.
This chassis moves at a velocity V (in/s) and rotates, or twists, at a rate of
 (radians/s) [Note: a capital V is used here for velocity to avoid
confusion with  (rotational rate) in equations]. The imaginary Centerline
Wheel concept used in Twist 1 is not useful for Twist 2. We need look at
only one wheel, i (there are n wheels). The wheel has a fixed orientation
relative to the chassis (i° – same as Twist 1).  is the chassis orientation
relative to the direction of travel and is now a function of t (time), where
(0) is a known initial condition. Steering twist angle (i) is the
deviation from Crab Mode steering angle ().  = 2 –  is of course also
a function of t ((t)).

FIGURE 6 – Twist 2 Geometry

Twist 2 rotational rate  competes with chassis velocity V. Any wheel
passing i = 3/2 with a positive  (or i = /2 with a negative ) must be
driven at a speed of V + h|. Since the maximum drive speed is limited
to Vmax (about 108 in/s), chassis and rotational velocities will need to be
balanced on the basis of y & z-axis Joystick inputs.

The attached Model contains a reasonable allocation between chassis and
rotational velocities. At zero forward velocity and maximum z, the
chassis will rotate at full drive speed. At zero twist (z) and maximum
drive (y), the chassis will drive forward at full drive speed. In the arena of
negotiation, drive speed remains maximized at its peek and the twist and
forward drive play off against each other.

The rotational position of the chassis can calculated:

 (t) = (0) + t eq. 8

It is important to keep the value of  between 0 and 2.

To calculate the angular positions any for individual wheel i:

    ii t  eq. 9

As above, keep these values between 0 and 2.

x, y and scalar wheel velocities are:

 iix hVtV  sin)(,  eq. 10

   iiy htV  cos,  eq. 11

   2
,

2
, iyixi VVtV  eq. 12

The calculation of i(t) is conditional.

If Vx,i > 0, then:

ix

iy
i V

V

,

,1tan  eq. 13a

If Vx,i > 0 and i < /2, then:

   

ix

iy
i V

V

,

,1tan eq. 13b

If Vx,i > 0 and i ≥ /2, then:

   

ix

iy
i V

V

,

,1tan eq. 13c

There is a dimensionless number, h|/V, which characterizes the behavior
of Twist 2. If h|/V < 1, the wheels do not pivot completely around with
each twist revolution (they oscillate). If, on the other hand, h|/V ≥ 1,
then the wheels do pivot completely around with each twist revolution.

These equations will work if V = 0. In this case, Twist 2 becomes
effectively Twist 3.

A robust model has been developed based on 1st principles. An earlier
model had been built from the back-end forward, but it broke under the
conditions h|/V ≥ 1. Under the conditions h|/V < 1, the 1st principles
and back-end models agree exactly. The solution for the new model is
analytical. The worksheet model is shown below.

This is a dynamic system. Setting the joystick position simply starts the
dynamic process. Steering angles for the above twist are:

And relative motor speeds:

But each system of inputs provides a unique solution.

