
Pivot-Wheel Drive – Crab with a Twist! 
Clem McKown – Team 1640 

13-November-2009 (eq 1 edited 29-March-2010) 
 
 
4-Wheel Independent Pivot-Wheel Drive describes a 4wd drive-train in which each of the 
(4) wheels are independently driven and may be independently pivoted for steering 
purposes.  The design offers the potential for excellent drive-train performance and a 
solution to conventional (tank) drive-train design constraints.  The design also brings 
some clear design and control challenges. 
 
This arrangement provides the possibility to operate in several different modes.  One of 
these modes is Crab mode.  In Crab Mode, all wheels steer together and drive at a 
common speed thereby steering the robot in any direction on the 2-d playing surface (true 
2-d drive).  As described above, this mode does not allow overt control of chassis 
orientation. 
 
Gary Deaver, a Team 1640 Mentor, made the case that a Pivot Drive robot with 4 
independently driven and steered wheels was not intrinsically constrained to typical Crab 
behavior and that it should be feasible to overtly control chassis orientation.  
Furthermore, from a human interface standpoint, a 3-axis joystick which includes a twist 
axis as the 3rd control axis would provide an intuitive means of human control over a 
Crab twist function. 
 
The ability to control chassis orientation in Crab Mode provides an obvious operating 
advantage. 
 
This paper addresses how to accomplish such “twist” behavior from a Pivot and Drive 
standpoint. 
 
The Basic Crab Chassis 
 

The Basic Crab Chassis is shown in Figure 1.  There are 4 Pivot Wheels set on an 
l x w wheelbase.  Wheel numbering here is consistent with the earlier 
“Programming a Pivot-Wheel Drive” paper of 9-August-2009.  A chassis Center-
Point (CP) may be defined in the geometric center of the wheelbase.  Each wheel 
(and each pivot) is h distance from the chassis CP, where: 
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Direction of Travel is not necessarily aligned with the wheelbase.  The difference 
between the chassis orientation and the direction of travel is .  It is important 
than  is known.  Right-hand-rule applies to angle measurements with the thumb 



on the z (up) axis.  All angle calculations will be carried out in radians.  All 
angular values expressed here will be in radians unless otherwise noted. 
 
Normally in Crab Mode, all wheels will be aligned with the direction of travel and 
all drives will be equally powered (or, ideally, all driven at the same speed, which 
is not necessarily the same thing).  All wheels would therefore be pivoted at  
 

 = 2-       eq. 2 
 
from “straight ahead”. 
 
The orientation of each pivot/wheel from the chassis CP may also be defined 
relative to the direction of travel, i (i = 1-4).  
 

FIGURE I – Basic Crab Chassis 

 
Crab Modes 

 
There are two logical ways to control Crab Mode.  There are also two logical 
ways to twist in Crab Mode.  Each of the two twist modes fits intuitively (also 



logically and philosophically) with its own Crab Mode.  We will describe the two 
Crab Modes before describing the Twist Modes. 
 
Crab Mode 1 – Anchored to the chassis 
 

In this mode, the direction of the joystick’s deviation from neutral 
corresponds directly to the chassis’s direction of travel, relative to the 
chassis’s orientation.  Pushing the joystick straight ahead moves the 
chassis straight forward ( = 0).  Throwing the joystick directly right 
moves the chassis towards the chassis’s right side ( = 3/2).  Pulling the 
joystick straight back moves the chassis backwards ( = ).  A good mode 
if chassis orientation means something. 
 
It is not clear that the drive motors would ever reverse in Crab 1. 

 
Crab Mode 2 – Free form (but I know where I am, really!) 
 

I am certain this is how Team 118 worked in 2007 (except maybe the 
knowing part). 
 
In Crab 2, y-direction joystick movement runs the drive motors (forward 
or reverse).  x-direction joystick movement runs the steering motors (left 
and right).  A neutral x-position means that the robot continues on its 
current heading regardless of that heading’s orientation with the chassis.   
 
x-direction joystick movement changes heading, without regard to chassis 
orientation. 
 
There is a presumption here that one wheel will be the master and the 
other three slaves.  One wheel must set the heading.  The other three need 
to point in the same direction. 
 
This could be very intuitive for a driver (looking for movement without 
having to pay and attention to chassis orientation).  Visually, we are 
directly attuned to movement.  Attention to orientation requires thought, 
slowing the process. 
 

This is as far as I care to judge Crab 1 & 2 without data.  They are different, 
though.  Fortunately, through the magic of programming, we can (in principle) 
accommodate both. 
 

Twist Modes 
 
Twist 1 

 



Crab 1 locks joystick orientation with chassis drive direction.  Twist 1 
should be consistent.  This can be accomplished by incorporating a Snake 
Mode turn into a Crab Mode 1 Twist.  Such a turn is shown schematically 
in Figure 2.   
 
Through the turn, the orientation of the chassis relative to the direction of 
travel () never changes.  Chassis orientation does change relative to the 
field, and does so in an overt, controlled manner. 
 
Twist 1 is really a turn, not a twist, but it is a Snake turn performed in 
Crab Mode. 
 

FIGURE 2 – Twist 1 Schematic 
 

Twist 2 
 
In Crab 2, steering is relative to the chassis’s current heading in relation to 
the field.  There is no fixed relationship between joystick position and 
chassis heading ().  In Crab 2, it would make sense for Twist to rotate the 
chassis without (if possible) changing the heading relative to the field.  
This would necessarily change . 



 
So Twist 2 is a real twist and not a turn.  Twist 2 is shown schematically in 
Figure 3. 

FIGURE 3 – Twist 2 Schematic 
 

 
Twist 2 introduces a new steering regime to 1640 – dynamic steering. 
 
Up to this point (including Twist 1), steering can be considered static.  
That is, once the human controls are set, this determines a robot response 
(steering angle & drive speed, in this case) which does not change until the 
human controls change. 
 
Twist 2 is different.  In order to rotate the chassis while retaining a 
constant bearing (relative to the field), steering and drive speed need to be 
dynamic.  Steering angle and drive speed changes continuously for each 
wheel as a function of i (for given human interface values).  This will 
provide a unique challenge for the team. 
 

Twist 3 
 
Did I say 2 twist modes?  What was I thinking?  There’s a caveat.   
 
If the robot is stationary, a 3rd twist is logical.  This simply sets all of the 
wheels tangent to the circle that they describe and turn the chassis like a 
turret.  Ken Au has already programmed this as an independent mode.  
This is also the logical limit of a Snake Mode turn (but in Snake the 
“inside” pivots turn an extra ).  See Figure 4. 
 
In the configuration shown, it would be necessary to run two motors in 
reverse to rotate the chassis. 
 
We will see that Twist 3 is logically incorporated in Twist 2 without a 
special effort.   
 



FIGURE 4 – Twist 3 (Stationary Chassis Rotation) 
 

 
The Math behind Twist 1 
 

Twist 1 is a generalized approach to Snake Mode.   
 
Figure 5 defines the basic geometry behind Twist 1.  The chassis is represented by 
a circle of radius h about a chassis CP.  There is an angular bearing of travel 
relative to the nominal chassis orientation of .  There are n (n = 4 in our case, but 
this is not important here) wheels distributed around the circle’s radius (only one 
is shown), each at a known, fixed orientation (i°) relative to the physical chassis, 
but at a variable orientation relative to the direction of travel (i), so that: 
 

 ii        eq. 3 

 
Care needs to be taken to check that i remains in the range 0 - 2 (add or subtract 
2 to if necessary). 
 
When driving in Crab Mode (without twist), all wheels are oriented at  = 2 –  
relative to the chassis’s “straight ahead” orientation. 
 



As with the earlier Snake Mode analysis, it is useful to imagine a “reference 
wheel” on the centerline relative to the direction of travel.  This reference wheel is 
located h distance ahead of the chassis CP.  The centerline reference wheel would 
respond directly and proportionally to the joystick z-axis input and therefore 
determine the turn radius (RCL) as a function of reference pivot angle (CL).  The 
nomenclature  is adopted here because it is an additional steering change on top 
of the Crab steering angle . 
 

FIGURE 5 – Twist 1 Geometry 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
CL is assigned proportionally from the joystick z-axis input.  For the 
sake of simplicity, I limited the maximum CL values to the range ±/4.  
This limitation keeps the turning centerpoint from coming inside the 
chassis circle.   In Snake Mode, the limitation is ±/2.  The chassis turn 
radius RCP is calculated: 
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A turn radius for each wheel (Ri) can be calculated. 
 

  222 sincos iCPii hRhR     eq. 5 

 
As well as a twist steering angle (i).  (Note: the following equation may 
need to be negated or otherwise modified based on joystick input specs). 
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The wheel drive velocity factor for each wheel is the ratio: 
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where Rmax is the greatest turning radius for the wheels. 
 
A worksheet for Twist 1 calculations was developed.   
 

 



 
The most significant complication of Twist 1 as compared to Snake Mode 
is that the calculations depend upon the chassis orientation , and can 
therefore not be easily pre-calculated (unless you parse  and pre-calculate 
a 3-d array). 
 
Twist 1 is a static steering system.  Once the joystick controls are set, all 
steering and drive values are determined and do not change until the 
joystick controls change. 
 

Math behind Twist 2 
 
Twist 2 geometry is shown schematically in Figure 6.  It’s actually simpler 
than Twist 1.  It retains the useful concept of the h-radius chassis circle.  
This chassis moves at a velocity V (in/s) and rotates, or twists, at a rate of 
 (radians/s)  [Note: a capital V is used here for velocity to avoid 
confusion with  (rotational rate) in equations].  The imaginary Centerline 
Wheel concept used in Twist 1 is not useful for Twist 2.  We need look at 
only one wheel, i (there are n wheels).  The wheel has a fixed orientation 
relative to the chassis (i° – same as Twist 1).   is the chassis orientation 
relative to the direction of travel and is now a function of t (time), where 
(0) is a known initial condition.  Steering twist angle (i) is the 
deviation from Crab Mode steering angle ().   = 2 –  is of course also 
a function of t ((t)). 
 

FIGURE 6 – Twist 2 Geometry 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Twist 2 rotational rate  competes with chassis velocity V.  Any wheel 
passing i = 3/2 with a positive  (or i = /2 with a negative ) must be 
driven at a speed of V + h|.  Since the maximum drive speed is limited 
to Vmax (about 108 in/s), chassis and rotational velocities will need to be 
balanced on the basis of y & z-axis Joystick inputs.   
 
The attached Model contains a reasonable allocation between chassis and 
rotational velocities.  At zero forward velocity and maximum z, the 
chassis will rotate at full drive speed.  At zero twist (z) and maximum 
drive (y), the chassis will drive forward at full drive speed.  In the arena of 
negotiation, drive speed remains maximized at its peek and the twist and 
forward drive play off against each other. 
 
The rotational position of the chassis can calculated: 
 
 (t) = (0) + t    eq. 8 
 
It is important to keep the value of  between 0 and 2. 
 
To calculate the angular positions any for individual wheel i: 
 
    ii t       eq. 9 

 
As above, keep these values between 0 and 2. 
 
x, y and scalar wheel velocities are: 
 
 iix hVtV  sin)(,      eq. 10 
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The calculation of i(t) is conditional. 
 

If Vx,i > 0, then: 
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If Vx,i > 0 and i < /2,  then: 
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If Vx,i > 0 and i ≥ /2, then: 
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There is a dimensionless number, h|/V, which characterizes the behavior 
of Twist 2.  If h|/V < 1, the wheels do not pivot completely around with 
each twist revolution (they oscillate).  If, on the other hand, h|/V ≥ 1, 
then the wheels do pivot completely around with each twist revolution.   
 
These equations will work if V = 0.  In this case, Twist 2 becomes 
effectively Twist 3. 
 
A robust model has been developed based on 1st principles.  An earlier 
model had been built from the back-end forward, but it broke under the 
conditions h|/V ≥ 1.  Under the conditions h|/V < 1, the 1st principles 
and back-end models agree exactly.  The solution for the new model is 
analytical.  The worksheet model is shown below. 
 

 
This is a dynamic system.  Setting the joystick position simply starts the 
dynamic process.  Steering angles for the above twist are: 



 
And relative motor speeds: 
 

But each system of inputs provides a unique solution. 


