1640 Pivot Drive

Value Engineering 26 November, 2011

1640 Pivot Drive - 2011 version

- Our 2nd year with Pivot Drive
- Combines agility with force
- Provides competitive advantage
- Enables game-specific drive modes
- Comes at a price:
 - Mass (36 lb) down 3.6 from 2010
 - 8 Motors & motor controllers
 - \$ for materials
 - Requires highly-skilled drivers (whom we now train)
 - Programming is formidable (but in our pocket)
 - High-level machining & assembly capabilities
- ◆ 1640 is known as a team which does Pivot well

Value Engineering

- Value Engineering seeks to widen the gap between a device's value (to the user/customer) and its cost by:
 - Increasing the value (performance);
 - Reducing the cost (traditionally \$s, but mass, motors, driver skill,... apply as well);
 - both

Previous Value Engineering

- We did this a year ago
- Results were an extensive redesign
- Expect less radical changes this year

2011 Pivot

Observed Performance Deficiencies

- Driving a straight line is difficult
- It would be good to expand our policy of not relying on set screws
- Further mass reduction would be good
- Heads of BHCSs used to attach pivot modules to chassis are easily stripped – use SHCSs
- Better access to nuts used for pivot module attachment needed
- Also easier manufacturing
 - The thermal interference assembly between Pivot Tube & Pivot Top was the very devil (even though it performed well in service)

Cost

- ◆ It is more difficult to drive in a straight line with Pivot vis-à-vis Tank
- *8 motors
- Mass Pivot mass 36.4 lb
- \$s drive-train materials cost \$1,503 (versus \$3,500 limit)
- Needs a lot of CNC machine time
- Driver Skills Driver training is now a part of our culture

Benefits

- Pivot drive does provide real competitive advantage (agility + traction)
- ◆ In 2011 1640 built a machine for the 1st time
 - part of this change was driven by pivot drive (but not all)
- Driver training is now a part of our culture
- We win competitions now (not all due to pivot drive)
 - Half of <u>all</u> awards received by the team in its 7year existence were received in 2011 (8/16)

Pivot 8

- Evolution, not revolution
- A lighter cage (0.6 lb savings for robot)
- ♦ 7075 transfer axle (0.4 lb savings for robot)
- Drill access holes in chassis for nutdrivers
- Other ideas?

Maybe...

- Machine Pivot Tube and Pivot Top for one piece
- Encoders to monitor drive speed
- Replace (8) 1" ball bearing races with bushings (cost & mass reduction)
- Linking front & rear drives

This is intended to be the start of a dialogue

What we did

- Made modules ambidextrous separate L&R modules eliminated fewer competition spares needed
- Used the lighter cage
- Used the 7075 Al transfer axle
- Designed lighter module plates
- Re-specified the steering motor & gearbox cheaper & lighter
- Used unhardened miter gears cheaper
- Identified better, less expensive angle sensors cheaper & better
- Used flex couplings to couple angle sensors to steering shaft lower maintenance
 & easier calibration
- Moved steering motors to top less risk of damage
- Replaced Al steering drive pulley with Nylon lighter & cheaper
- Repositioned stand-offs stronger
- Replaced BHCSs with SHCSs for module mounting easier maintenance
- Chassis design allows unrestricted access to mounting nuts
- Up-front planning of CAM/CNC operations easier manufacture & better utilization of materials

Key results

- Module mass reduced from 9.3 to 8.6 lb_m − 0.7 lb_m reduction per module (7.5%)
- Module cost reduced from \$375.⁷² to \$340.⁶⁷ \$35.⁰⁵ savings per module (9.3%)
- Competition spare parts requirements halved by elimination of separate L & R modules
- Maintenance simplified
- Steering is spot-on (improved performance)
- CNC Milling performed with student involvement

Executive Summary

◆ While the 2012 and 2011 pivot modules are visibly closer in appearance than the 2011 and 2010 versions, the improvements achieved in this 2nd round of value engineering were on-par with the first round, with a focus shift from reliability in round 1 to cost reduction, mass reduction and ease of maintenance in round 2.

	20	10	2011	2012
Module Cost (\$):	\$364	4.85	\$375.72	\$340.68
Savings (\$):			(\$10.87)	\$35.05
Savings (%):			-3.0%	9.3%
Module Mass (Ib _m):		10.0	9.3	8.6
Reduction (lb _m):			0.7	0.7
Reduction (%):			7.0%	7.5%
Reliability	88		0000	$\odot\odot\odot\odot$
Ease of Maintenance	88		©©	$\odot\odot\odot$