# 3-Wheel Swerve Drive - The Trouble with Tribots 

Clem McKown - FRC Team 1640

8-August-2014

## Executive Summary

FRC's 2013 change in robot perimeter rules (to 112 in maximum overall perimeter from the earlier maximum 28 in x 32 in) opened new opportunities for non-rectangular robots. In particular, the new rules reduce the stability penalty for a 3-wheeled robot design vis-à-vis the preceding rules because it allows an expanded wheelbase for a 3-sided chassis.

The primary expected benefit of a 3-wheeled swerve robot over a 4 -wheeled is that it enables the use of two CIM motors per swerve module to yield a drive-train with 6 CIM motors overall. 6 drive CIM motors have become the standard for high-performance tank drive robots within FRC.

A 3-wheeled, 6-CIM swerve robot not only complies with FRC's 2013 \& 2014 motor limits, but the mass reduction realized by eliminating one swerve module allows for the addition of CIM motors without excessively compromising other robot systems.

Of course, there are expected to be drawbacks to a triangular, 3-swerve chassis as well as benefits. The team intends to build and test a prototype chassis to gain a better understanding of both the benefits and deficits of the concept.

The purpose of this paper is to define the mathematics for controlling a 3-swerve robot, both under chassis-centric and field-centric control.

## Chassis Basis

The proposed chassis design has three swerve modules arranged at the apexes of an equilateral triangle. The pivot axes are located $2.700^{\prime \prime}$ from the exterior surface of the chassis frame, a distance which allows safe rotation of the pivot (1640's 2013 \& 2014 design) without interfering with bumpers, etc. The chassis frame's apexes are truncated to flats also $2.700^{\prime \prime}$ from the pivot axis. The designed total perimeter is 111 in , providing the same 1 in safety margin that 1640 used in their 2013 \& 2014 chassis. All swerve modules are mounted so that the calibration $0^{\circ}$

faces directly away from chassis center-point. A dimensioned schematic of such a chassis is provided in Figure 1.

## Conventions

In this document, lengths will be expressed in inches (in or ") and angles in degrees $\left({ }^{\circ}\right)$. Longitudinal precision will be 0.001 " unless stated otherwise.

Right-hand rule applies for determining positive angle direction.
Swerve angles will be based on single-direction drive with each module's drive direction being the swerve angle direction (therefore driving at $0^{\circ}$ when the swerve angle is $0^{\circ}$ ).

## Prototype



A Tribot prototype chassis was designed and built using $3 / 4$ " thick laser-cut plywood. An 8 -slot cRIO was employed due to ready availability. Jaguar motor controllers were elected for the same reason. The design called for 2013 swerve modules, but 2012 modules were actually installed, again due to ready availability. The 2012, 2013 \& 2014 swerve modules share identical mounting bolt hole patterns (the 2012 having an additional, unused mounting hole) and identical relations between these mounting holes and the pivot, CIM and steering axes, so critical geometry is unaffected. The 2012, 2013 \& 2014 swerve modules also utilize the same angle sensors, and these are mounted in the same manner.

The Tribot prototype maintains the same swerve module spacing and orientations as provided in the Figure 1 schematic on Page 1.

## Human Interface

The Driver uses a wired Xbox controller having dual, thumbdriven joysticks.

The primary joystick controls the robot's movement in Crab Mode.


In Crab Mode, both x and y information is used with the joystick's angle providing directional settings and the joystick's displacement from neutral providing speed settings.

The secondary joystick works with the primary to provide the turning capabilities of Snake and Ocelot Modes. Only the x information is used from the secondary joystick and this indirectly sets turning radius.

## Chassis-centric versus Field-centric control

Chassis-centric and field-centric refer to two different directional references for the driver and the control logic. Team 1640 has hitherto always used chassis-centric control in which a specific axis of the chassis is determined to be "straight ahead". Joystick controls then operate on this reference. This is easier to execute from an instrument and software basis, as it does not require the robot to "know" which way it is facing relative to the field axes. On the other hand, it required the driver to know which way the robot is facing relative to field axis and to put her/his mind into this orientation while driving. This increases the driver's mental burden.

Field-centric control would allow the driver to move the robot around the field using the primary joystick while controlling the chassis orientation relative to the field with the secondary. The driver's reference space becomes the stationary field, reducing (we think) driver's mental burden. From a robot standpoint, life gets harder, as the robot now needs to "know" its orientation relative to the field. Gyroscopes are the way to know this and only one axis is needed. Issue is that the gyroscope must remain stable for the match duration (with all its hard knocks) to be effective.

Other than the change in reference, Crab Mode remains the same in chassis and field-centric control. The same is not true for Snake and Ocelot, as these undergo a reversal. In chassiscentric control, Snake Mode is static whereas Ocelot requires dynamic driver input. These relationships flip in field-centric control.

Chassis-centric control will be derived first; Field centric follows because it applies an additional level of calculation and control to Chassis-centric logic.

## Chassis Geometry

Remaining consistent with both Figure 1 on Page 1, the actual prototype, and (as far as possible) previous white papers by this author, three swerve modules are arranged around a chassis center-point with a uniform distance $h$ between the chassis

center-point and the pivot axes and an angle $\theta=120^{\circ}(2 \pi / 3 \mathrm{R})$ between each pivot axis around the chassis center-point. Swerve modules are mounted so that each module's $0^{\circ}$ calibration axis faces directly away from the chassis center-point. Swerve modules are identified by numbers 1 , $2 \& 3$ following right-hand rule.

The line from the chassis center-point to the pivot axis of swerve module 1 defines the $0^{\circ}$ chassis axis.

Note that based on Figure 1, $h=17.762$ in.

## Chassis-Centric Crab Mode



In Crab Mode, the primary joystick applies a Vector of Motion to the chassis described in the previous section. This Vector of Motion provides both angular direction $(\gamma)$ and power/speed $(V)$ information. $\gamma$ may be $0-360^{\circ}$.

For Crab Mode, all swerves would be aligned with $\gamma$. For individual swerve angles ( $\alpha_{\mathrm{Ci}}$ ):

$$
\begin{array}{ll}
\alpha_{\mathrm{C} 1}=\gamma & \text { eq. } 1 \\
\alpha_{\mathrm{C} 2}=\gamma-120^{\circ} & \text { eq. } 2 \\
\alpha_{\mathrm{C} 3}=\gamma-240^{\circ} & \text { eq. } 3
\end{array}
$$

All calculated swerve angles must be checked and if $<0^{\circ}$, add $360^{\circ}$ to make $>0^{\circ}$. However, the right time to make this correction (and the opposite: if $>360^{\circ}$, subtract $360^{\circ}$ to make $<360^{\circ}$ ) is after assessing all drive calculations, including Snake Mode.

Drive power $(V)$ is proportional to the primary joystick's displacement from neutral. In Crab Mode, all drives receive equal power.

## Chassis-Centric Snake Mode

Snake Mode drives the chassis in an arc with chassis orientation following the path of the arc. The basic chassis orientation and speed are based upon the Crab Mode primary joystick inputs, while the arc radius is indirectly set via the secondary joystick x input.


In the 2009 swerve white papers, I introduced the concept of a "reference CL wheel", a useful tool for working through the mathematics around Snake Mode. The "reference CL wheel" concept will be employed again here.

The "reference CL wheel" is not a real wheel, but a hypothetical pivot wheel located at a distance $h$ from the chassis center-point and oriented along the vector of motion. The diagram at left shows a "reference CL wheel" and the real pivot wheels on a chassis.

The secondary joystick steers by steering the reference CL wheel directly, creating an angle, $\delta_{C L}$, between the vector of motion and the reference CL wheel's drive direction. It can be easily shown that the triangle formed by the reference CL wheel, the chassis CP and the Turn CP is a right triangle and has the angle $\delta_{C L}$ at the Turn CP apex, which allows calculation of the Turn Radius, $R_{C P}$.

$$
\begin{equation*}
R_{C P}=\frac{h}{\tan \delta_{C L}} \tag{eq. 4}
\end{equation*}
$$

Equation 4 blows up (division by zero) if $\delta_{C L}=0$ (neutral joystick position). So don't do Snake Mode calculations if the secondary joystick is neutral.

We need to now define $\gamma_{i} . \gamma$ (no subscript) has already been defined as the angular offset between the chassis axis and the vector of motion. $\gamma_{i}$ is the angular offset from the vector of motion to each individual pivot axis $(i=1,2,3)$. For calculation:

$$
\begin{array}{ll}
\gamma_{1}=-\gamma & \text { eq. } 5 \\
\gamma_{2}=120^{\circ}-\gamma & \text { eq. } 6  \tag{eq. 6}\\
\gamma_{3}=240^{\circ}-\gamma & \text { eq. } 7
\end{array}
$$

Turn radiuses for all swerve wheels may now be calculated:

$$
\begin{equation*}
R_{i}=\sqrt{h^{2} \cos ^{2} \gamma_{i}+\left(R_{C P}-h \sin \gamma_{i}\right)^{2}} \tag{eq. 8}
\end{equation*}
$$

and drive power factors for each wheel:

$$
\begin{equation*}
V_{i}=V \frac{R_{i}}{R_{\max }} \tag{eq. 9}
\end{equation*}
$$

A choice is now needed. What will be the range of $\delta_{C L}$ ? In the first "Pivot-Wheel Drive" white paper of 2-August-2009, a limited (chassis aligned with vector of motion) snake mode was presented with a $\delta_{C L}$ range from -90 to $+90^{\circ}$. At the limits of the range, the turn radius is zero and the turn center-point and chassis center-point are the same. Swerve angle calculations were complicated by the need to switch calculations based on whether the turn center-point is inside or outside the wheel-base.

In "Pivot-Wheel Drive - Crab with a Twist" white paper of 29-March-2010, a general (random alignment between the chassis and vector of motion) snake mode (referred to as Twist 1 in the paper) was presented, but where $\delta_{C L}$ 's range is limited to -45 to $45^{\circ}$. By limiting the range of $\delta_{C L}$, the turn center-point never comes inside of the $h$-radius circle around the chassis center-point; the equations are thereby simplified. The control logic for DEWBOTs IX \& X both follow the mathematics presented in this latter paper, including the limited $\delta_{C L}$ range.

The math for both cases will be presented here.
For the case that:

$$
\begin{array}{ll}
{\left[\text { sign of } \delta_{C L}\right] \cdot \mathrm{R}_{\mathrm{CP}} \geq\left[\operatorname{sign} \text { of } \delta_{C L}\right] \cdot h \sin \gamma_{i}} & \begin{array}{l}
\text { (Turn center-point is not inside wheelbase - } \\
\text { always true for }-45^{\circ} \leq \delta_{C L} \leq+45^{\circ} \text { ) }
\end{array} \\
\delta_{i}=\left[\operatorname{signof} \delta_{C L}\right] \sin ^{-1} \frac{h \cos \gamma_{i}}{R_{i}} & \text { eq. } 10
\end{array}
$$

For the case that:

$$
\begin{align*}
& {\left[\operatorname{sign} \text { of } \delta_{C L}\right] \cdot \mathrm{R}_{\mathrm{CP}}>\left[\operatorname{sign} \text { of } \delta_{C L}\right] \cdot h \sin \gamma_{i} \quad \text { (Turn center-point is inside wheelbase) }} \\
& \delta_{i}=180^{\circ}-\tan ^{-1}\left(\frac{h \cos \gamma_{i}}{R_{C P}-h \sin \gamma_{i}}\right) \tag{eq. 11}
\end{align*}
$$

Finally, to calculate the actual steering set-points:

$$
\alpha_{i}=\alpha_{C i}+\delta_{i} \quad\left(\text { add or subtract } 360^{\circ} \text { as needed for } 0-360^{\circ} \text { range }\right)
$$

## A working Microsoft Excel model of snake mode control logic was developed.

## Tribot Snake Mode Model




## Chassis-centric Ocelot Mode

Presently, ocelot mode requires that the driver dynamically rotate the vector of motion (using the primary joystick) to maintain a steady course while snake steering. This should work with the control equations presented here, although care needs to be taken to keep the turn center-point away from the chassis center-point. Otherwise the robot will spin in a stationary location. I understand that the current ocelot drive (4-wheel) basically "rolls" along the h radius circle which passes through the pivot axes.

## Field-centric Control

Field-centric control requires that the robot be able to sense the direction of the field axis relative to chassis orientation $(\phi)$. Typically this requires a gyroscope (ideally at the chassis center-point) although other options exist. This sensing need be only one axis.

If using a gyroscope, concerns are:

1. Stability of the gyroscope over the match duration
2. Initializing and calibrating the control system to the field axis at match start.

We need to understand what chassis orientation behavior we want in field-centric control. We know from chassis-centric experience that the orientation relative to the field changes as we drive. We could accept this; using the gyroscope to control speed and direction relative to the field but allow orientation to drift as we drive and then control it using the secondary joystick only as and when needed, or we could use the gyroscope data to control chassis orientation unless the secondary joystick is used to change it.

## Field-centric Crab Mode

There needs to be an additional piece of information: $\phi\left({ }^{\circ}\right)$, the angular displacement of the field axis from the chassis axis $\left(0-360^{\circ}\right)$.

The joystick steering direction, $\gamma\left({ }^{\circ}\right)$, is now relative to the field axis, not the chassis axis.


For crab mode, swerve set-points can be calculated:

$$
\begin{array}{ll}
\alpha_{\mathrm{C} 1}=\gamma+\phi & \text { eq. } 13 \\
\alpha_{\mathrm{C} 2}=\gamma+\phi-120^{\circ} & \text { eq. } 14 \\
\alpha_{\mathrm{C} 3}=\gamma+\phi-240^{\circ} & \text { eq. } 15
\end{array}
$$

As with chassis-centric crab mode, these values need to be checked and adjusted to $0-360^{\circ}$ range.
All drive motors are driven at the same power on crab mode based on primary joystick displacement from neutral.

## Field-Centric Chassis Orientation

The action of the secondary joystick is fundamentally different in field-centric control than it is in chassis-centric. In chassis-centric control, this input drives the robot in snake turns. In fieldcentric, the secondary joystick rotates the chassis to change chassis orientation while driving in crab mode. This is an ocelot twist and this drive mode is automatic in field-centric control. In chassis-centric, ocelot twist driving requires dynamic driver control. In field-centric control, it is snake turning which requires dynamic driver control. They are flipped.

The white paper "Pivot-Wheel Drive - Crab with a Twist" of 29-March-2010 dealt with ocelot mode (referred to as Twist 2 in the paper), but not effectively. A different approach is used here.

Actually, an ocelot twist is handled just like a snake turn, but with a critical difference:

- In a snake turn, for a given joystick input, the angle between the vector of motion and the chassis axis remains fixed and the vector of motion rotates about a turn centerpoint. Swerve set-points during a snake turn are static - they are determined by the joystick input only and do not change until the joystick input changes.
- An ocelot twist, for a given joystick input, maintains a constant vector
 of motion relative to the field axis. While the turn logic and mathematics are the same as snake, an actual turn is prevented by continually adjusting wheel directions to keep the robot's course constant. This is a dynamic steering system.

As with snake turning, a "reference CL wheel" is used for steering. The steering angle ( $\delta_{C L}$ ) range for this wheel should definitely be constrained to $\pm 45^{\circ}$. $\delta_{C L}$ is determined directly by the secondary joystick x input (just as in snake) and determines (for a fixed speed input) the rotational speed of the ocelot twist. Note that ocelot twisting will slow the robot's overall velocity and this effect increases as $\delta_{C L}$ deviates from $0^{\circ}$.


Angle between Chassis Axis and Vector of Motion changes To maintain constant Vector of Motion through a "turn" (for constant joystick input)

Variables \& calculations:
$\phi$ was defined in the Field-Centric Crab Mode section as the angle between the chassis axis and the field axis. This is provided in real time via on-board instrumentation. It is dynamic.
$\gamma$ was defined in the Field-Centric Crab Mode section as the steering direction relative to the field axis. This is provided from the primary joystick. Static (as long as joystick input not changed).
$\alpha_{C 1}, \alpha_{C 2}$ and $\alpha_{C 3}$ have been defined in equations $13,14 \& 15$ in the Field-Centric Crab Mode section. These are the swerve angle set-points for Field-Centric Crab Mode. Dynamic.
$R_{C P}(\mathrm{in})$ is calculated using equation 4 in the Chassis-Centric Snake Mode section. Even though we're not actually turning, we run the math as if we are. Static (as long as joystick input not changed).
$\gamma_{i}$ (defined in the Chassis-Centric Snake Mode section) remains the angular offset between the vector of motion and each individual pivot axis $(i=1,2,3)$. Dynamic. The calculation of these values changes under field-centric control:

$$
\begin{array}{ll}
\gamma_{1}=-\phi-\gamma & \text { eq. } 16 \\
\gamma_{2}=120^{\circ}-\phi-\gamma & \text { eq. } 17 \\
\gamma_{3}=240^{\circ}-\phi-\gamma & \text { eq. } 18
\end{array}
$$

$R_{i}(\mathrm{in})$ are the individual wheel distances from the "turn center-point" $(i=1,2,3)$ and are calculated using equation 8 . Dynamic.
$V_{i}$ are the individual wheel power factors $(i=1,2,3)$ and may be calculated using equation 9. Dynamic.
$\delta_{i}\left({ }^{\circ}\right)$ are the individual swerve angle "corrections" (from the base $\alpha_{C i}$ 's) needed to affect the ocelot twist $(i=1,2,3)$. Calculated from equation 10 and are not conditional as long as $-45^{\circ} \leq \delta_{C L} \leq+45^{\circ}$. Dynamic.
$\alpha_{i}\left({ }^{\circ}\right)$ are the swerve angle set-points $(i=1,2,3)$. Calculated using equation 12. Dynamic.

So almost all of the mathematics are recycled from snake mode.

A robust Microsoft Excel model of field-centric ocelot mode control logic was developed, but it's a little heavy to paste in a Microsoft Word document. An observation is warranted, though. The plots of $\delta_{i}$ versus $\gamma_{i}$ and $V_{i}$ versus $\gamma_{i}$ are very characteristic and regular for a given $\delta_{C L}$. Examples below. There may be an opportunity to reduce some calculation burden with look-up tables. Something to keep in mind.


## A Final Twist in our Story

The final twist is a stationary twist around the chassis center-point. Swerve angles would all be $90^{\circ}$ or $270^{\circ}$, depending upon the direction of the twist. We do this now (DEWBOT X). We'll need to do it with a 3-swerve robot as well. This is referred to as Twist 3 in "Pivot-Wheel Drive - Crab with a Twist" of 29-March-2010.

