DEWBOT IX Design Team Page

From DEW Robotics
Revision as of 23:56, 18 June 2013 by MaiKangWei (talk | contribs) (Engineering 101)

Jump to: navigation, search

Student Lead: tbd

Student Sub-Lead: Dhananjay (DJ)

Student Team Members: Jack, Kira, Tobi

Mentors: Clem McKown, Heather McKown , Siri Maley , Gary Deaver , Ben Kellom, Julie Christopher , Scott Featherman, Joe Morganto

Motor Specifications

Here are the motor specifications and performance curves for the 2013 motors.

A first look at climbing physics

Here is a first look at geometry, power and normal force requirements for climbing the pyramid's corner pole in the 2013 game.

Drive Train model adapted for pyramid corner climbing

The Minibot drive-train model was adapted to work with climbing the pyramid corner. For use as a design tool.

Engineering 101

Lesson plans created in order to teach engineering analysis and synthesis on a level compatible with highschoolers.

3-Wheel Swerve Drive

Email from Clem McKown to the team - 18-June-2013:

While putting together an updated drive-train lesson and thinking about why a 3-wheel drive robot was such a bad idea, I had an epiphany: Under the 2013 robot perimeter rules, a 3-wheel drive robot is really not such a bad idea at all. In fact, a 3-wheel drive pivot robot is perhaps a very good idea. I'll explain.
The issue is stability. No-one want their robot to fall over. A robot will fall over if the gravitational projection of the robot's center of mass, adjusted for robot acceleration or incline, falls outside of the line described by the robot's contact points with the field (which we will call the wheel contact points). Remember, the gravitational constant is just acceleration, so we're adding (vector) apples and apples. Also, remember turning and stopping are also acceleration. Pretty simple, in principle.
Under old robot perimeter rules (<=2006 through 2012), the robot perimeter was limited to 28" x 38". Under these rules, the most stable robot you can make has at least 4 wheels as close to the corners of this rectangle as practical. A 3-wheel drive robot under these rules seriously compromises stability. This is the same reason for there being no 3-wheel automobiles in the US (safety - there is a Buckminster Fuller story here).
But the new (2013) perimeter rules allow up to 112" of total robot perimeter. The shape of this perimeter is not specified. When we designed our chassis, we saw this rule as allowing us flexibility in varying length versus width of a fundamentally rectangular robot (which we ended up making square). DEWBOT's 2013 perimeter was 111" (27-3/4" square). Our wheel-base ended up 21" (nominally wide) x 22.25" (nominally long). A 112" square chassis would have sides of 28"
But if a side is eliminated, the other sides can become longer. An equilateral triangle with a 112" perimeter would have sides of 37-1/3" long. Pivots could be installed in the three corners to bring them as close to the perimeter as practical, increasing the wheel-to-wheel distance vis-à-vis DEWBOT IX. Under these conditions, I would expect a 3-wheeel drive base with stability similar to this year's 4-wheel base (which was excellent).
But with three pivots, not 4. This would save significant weight (the 2013 pivots were 7.9 lb each, plus talons,...) which could be deployed elsewhere.
Unlike tank or mecanum, I think pivot drive should work as well with 3-wheels as with 4. But, this poses a new control challenge for us (sorry, programmers).
And a pointier robot (60° versus 90°) could break through defenders more easily.
I'm excited, but I'm easily amused. Let me know what you think.
Best regards,

More Mathier:

Design Team Page History